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Slow dynamics and aging in a constrained diffusion model
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We carry out a complete analysis of the schematic diffusive model recently introduced for the description of
supercooled liquids and glassy systems above the glass temperature. The model is described by a trivial
equilibrium measure and the presence of kinetics constraints is mimicked through a rapidly decreasing mobility
at high particle density. The governing equation describing a sudden quench process is investigated analyti-
cally in a mean field approach and by means of numerical simulations. For deep quenches a long lasting
off-equilibrium dynamics is observed in dense systems before equilibration is achieved, where time transla-
tional invariance lacks and the system ages. The kinetics is slow in this time domain since the average particle
diffusivity D decreases in time, as opposed to the standard diffusion case of a constantD, that is recovered only
in equilibrium. The autocorrelation function decays slower than an exponential, falling in mean field as an
enhanced power law. The linear response function is computed and the modalities of the break-down of the
fluctuation dissipation theorem are analytically investigated, showing that aneffectivetemperature can be
defined which slowly approaches the bath temperature from above.

DOI: 10.1103/PhysRevE.63.031106 PACS number~s!: 05.40.2a, 05.70.Ln, 75.40.Gb
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I. INTRODUCTION

When glass-forming liquids are supercooled below
melting temperature their dynamical properties undergo d
matic changes and, in particular, the equilibrium relaxat
time t0 increases of several orders of magnitude. The sc
matic scenario about the microscopic origin of this slowi
down is generally believed to be the following: a partic
does not perform a Brownian motion in the fluid but rattl
many times insidecagesformed by the surrounding mol
ecules. The motion of a particle over distances larger t
the typical cage size is severely suppressed when the de
is high because configurational restrictions require a co
erative rearrangement of many particles and acomplexslow
dynamics is originated. Hard spheres are known@2# to repro-
duce these features and can be considered, therefore,
simple paradigm: kinetic constraints are themselves resp
sible for dynamical features, the equilibrium measure be
in this case, trivial. Thermodynamic observables are, in g
eral, rather regular along the glass transformation of m
systems. When the characteristic durationt0 of this coopera-
tive process exceeds the observation time the glass app
out of equilibrium. Structural rearrangements in this case
come slower and slower as time goes on and the system a
Time translational invariance~TTI! is lost and the respons
to an external perturbation depends on theageof the system,
that is the time elapsed since its preparation. The fluctuat
dissipation theorem~FDT! is thus violated.

In the main approach to glassy kinetics, the mode c
pling theory@3#, the dynamical equations are solved by r
summing a nontrivial set of diagrams and a glass transi
appears as a purely dynamical effect. This theory predict
equilibration timet0 which diverges as a power law at th
dynamical transition. Today it is well established@2# that the
1063-651X/2001/63~3!/031106~12!/$15.00 63 0311
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quoted theory applies in a region located well before
ideal glass point, wheret0 is found experimentally to di-
verge according to the Vogel-Fulcher law@2#

t0;exp@v~rc2 r̄ !21#, ~1!

where r̄ and rc are the average particle density, and t
critical density, respectively. Therefore we do not have
formation from the theoretical point of view on the dynam
cal behavior close to the glassy transition where stand
theories do not apply. However, since glassy features
mainly of a kinetic nature, it is important to establish ho
them depend on the details of the dynamics.

In a recent paper@1#, a simple diffusive model has bee
introduced to describe the slow relaxation process in su
cooled fluids near the dynamical transition and related gla
systems. The model aims to describe the main features o
out-of-equilibrium dynamics above the temperature of str
tural arrest. It is schematic in spirit and, in order to be g
neric, leaves aside as much system specific details as
sible. The basic assumption is that a good deal of
complex behavior observed in glassy systems can be
coded into a conventional diffusion equation by means o
suitably chosen particle mobilityM. Since particle motion in
real systems is severely suppressed in high density regi
due to kinetic constraints, the mobility is assumed to b
decreasing function of the density that vanishes as an a
densityrc is approached. These being the only ingredien
the model appears to be in the spirit of the Kob and And
sen model@4#, although the present approach is in the co
tinuum. M is chosen phenomenologically in order to repr
duce the relaxation time~1! observed in this region. The
same form ofM, however, has been obtained by several
thors in apparently heterogeneous contexts such as car p
©2001 The American Physical Society06-1
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ing problems@5# or free volume theories of the glass tran
tion @6# ~a sketch of this approach is given in Appendix B!.
The advantage of the present model is in its generality
simplicity, which allows one to compute the behavior of d
ferent observables by numerical simulations or analytica
in a mean field approximation.

In this paper a quench process is considered: a syste
equilibrium at a very high temperature is suddenly brough
a very low temperature. Our main result is the observation
a long lasting preasymptotic aging dynamics, before
equilibrium state is entered. In this preasymptotic time d
main the system evolves out of an initially pinned sta
which is due to the cage effect, by means of a slow dynam
characterized by a progressive decrease of the particle
bility. This glassy behavior is due to the existence of ma
time scales because dense regions are almost frozen
evolve slowly whereas less dense regions proceed qui
towards local equilibration. In this regime the autocorrelat
function decays slower than exponentially, falling as an
hanced power law in mean field. Both TTI and the FDT a
violated, the system being far from equilibrium. In me
field the modalities of the FDT break down can be analy
cally considered and aneffectivetemperature of the system
can be introduced which slowly approaches the bath t
perature from above.

The plan of the paper is as follows. In Sec. II the mod
kinetic equation is introduced. In Sec. III the dynamical p
cess is specified by introducing the quench parameters
Sec. IV the main observables are defined. Section V is
voted to the formulation of the mean field approximatio
Section VI presents the analytical solution of the mean fi
equations. In Sec. VII the breakdown of the FDT is cons
ered in mean field. In Sec. VIII the results of the numeri
simulation of the full model are presented. We draw o
conclusions in Sec. IX.

II. KINETIC EQUATION

We consider an assembly of particles in ad-dimensional
space. This system is described in terms of a coarse-gra
variabler(rW) representing the average particle density ins
a box of typical sizea centered atrW. Since the overall num-
ber of particles is conserved during the evolution, the
namics is properly described by a continuity equation

]r~rW,t !

]t
52¹•JW$r%1h~rW,t !, ~2!

where the Langevin stochastic termh(rW,t), that will be
specified below@Eqs.~6!#, takes into account the temperatu
fluctuations. From the chemical potentialm$r%

m$r%5
]F$r%

]r
, ~3!

whereF$r% is the free energy density of the considered s
tem, the currentJW$r% is obtained@7# as

JW$r%52M $r%¹m$r%, ~4!
03110
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whereM $r% is a mobility ~we assume thatM does not de-
pend explicitly on space, due to homogeneity and isotro
nor on time because of TTI! that will be discussed below
With Eqs.~2!,~4! we arrive at the following diffusion equa
tion for the coarse-grained variabler(rW,t):

]r~rW,t !

]t
5¹FM $r%¹

dF$r%

dr G1h~rW,t !. ~5!

According to the fluctuation-dissipation theorem, the exp
tation values of the noise fieldh(rW,t) are given by

^h~rW,t !&50,

^h~rW,t !h~rW8,t8!&522T¹$M $r%¹@d~rW2rW8!d~ t2t8!#%,
~6!

where^•••& indicates ensemble averages and temperatur
measured in units of the Boltzmann constantkB . Equation
~5! is fully specified by assigning the form ofM $r% and of
F$r%. With Eq. ~5! it will be shown that, for low tempera-
tures, the characteristic relaxation time in the equilibriu
state behaves asM 21( r̄). Then, in order to reproduce th
observed behavior~1! of the relaxation time, we consider
phenomenological density-dependent local mobility

M ~r!5H ev[r(rW,t)21]21
for r<1,

0 for r.1,
~7!

whererc has been rescaled to unity, for simplicity. A simila
form has also been derived in different approximations
several authors@5,6,8#. A sketch of its derivation in the spiri
of free volume theories is reported in Appendix B. Rega
ing the free energy, given that the essence of the glassy
havior is expected to be encoded into the form~7! of the
mobility, we consider the simple form appropriate for a ga
lattice model of noninteracting particles

F$r%

T
5E drW$r~rW !ln r~rW !1@12r~rW !# ln@12r~rW !#% ~8!

whose derivation is recalled in Appendix A.

III. QUENCH PROCESSES

Throughout this paper we will concentrate on the dyna
ics of the model following an instantaneous temperat
quench at timet50 from an initial equilibrium state at the
temperatureTi to a final lower temperatureT. It must be
observed that the equilibrium state of the model is co
pletely disordered, for every value of the temperature, si
particles are not interacting. However, although the init
and final states are trivial, the dynamical pattern that c
nects them will be shown to be highly nontrivial.

Cooling experiments on glass-former liquids are alwa
performed with a finite cooling rater; in this case one usu
ally observes@2# that a larger brings a supercooled liquid
out of equilibrium before~at higher temperatures! than for
smaller cooling rates. In the present approach it is possibl
6-2
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SLOW DYNAMICS AND AGING IN A CONSTRAINED . . . PHYSICAL REVIEW E63 031106
take into account the effect of a finiter by introducing a time
dependent temperatureT in Eqs.~6!; this, however, increase
the difficulty of the analytic approach that will be discuss
in Sec. V. Therefore in the present paper we will only co
sider the case of an instantaneous quench, living the ana
of a continuous quenching to a forthcoming article. Mo
over, it is reasonable to consider a series of instantane
shallow quenches~i.e., with a small value ofDT5Ti2T) as
a paradigm of a continuous quench with a small cooling ra
whereas a deep quench~with DT large! can be regarded a
an extrapolation of a case with larger. From the analysis of
the dynamical properties of the model that will be made
the following sections, in fact, it will be clear that a marked
out-off-equilibrium behavior is observed in the case of
deep quench, whereas the evolution is always nearby e
librium for sufficiently shallow quenches.

IV. OBSERVABLES

In this section we introduce the most important obse
ables for the description of the dynamics of Eq.~5!, that will
be explicitly computed in a mean field approximation in S
VI and numerically in Sec. VIII. The main quantity for th
study of the time decay of fluctuations is the correla
C(kW ,tw ,t), namely the Fourier transform of the real spa
two-time density-density correlation function.C(kW ,tw ,t) is
defined by

C~kW ,tw ,t !5^r~kW ,tw!r~2kW ,t !&, ~9!

where r(kW ,t) is the Fourier transform of the density fie
r(rW,t). The normalized correlatorC̃(kW ,tw ,t), defined by

C̃~kW ,tw ,t !5
C~kW ,tw ,t !

C~kW ,tw ,tw!
~10!

will be also considered and the~on site! autocorrelation

A~ tw ,t !5^r~rW,tw!r~rW,t !&5E
ukW u,L

ddk

~2p!d
C̃~kW ,tw ,t !,

~11!

whereL is a phenomenological ultraviolet momentum cuto
of ordera21. These quantities are usually studied in nume
cal simulations and real experiments. The spatial distribu
of the density fieldr(rW,t) can be studied through the equ
time correlator, the so-called structure factorC(kW ,t,t). The
existence of inhomogeneities can also be monitored by c
puting the average squared amount of density fluctuation

S2~ t !5^@r~x,t !2 r̄ #2& ~12!

which can be obtained from the knowledge of the struct
factor as

S2~ t !5~2p!2dE
uku,L

C~kW ,t,t !dkW . ~13!
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Experiments@9# as well as numerical simulations@10# are
very often concerned with the behavior of quantities rela
to the microscopic motions of particles. In the present c
test we consider the average diffusivity

D~ t !5^M $r%& ~14!

which does not depend on the position, due to space ho
geneity. Actually,D(t)dt is the mean distance traveled by
particle in an elementary time stepdt so that the quantity
R2(t), defined by

R2~ t !5E
0

t

D~ t8!dt8 ~15!

represents its mean square displacement since the qu
time, the motion being diffusive.

V. A MEAN FIELD APPROACH

Equation~5! cannot be solved analytically because of t
nonlinearities involved in bothM (r) andF$r%. In order to
make some analytical progress we resort to some approx
tions that will be shown to provide a description in substa
tial agreement with the outcomes of the direct numerical
tegration of Eq.~5! discussed in Sec. VIII.

We introduce amean fieldapproximation on the mobility
term by replacingM (r) with the effective diffusivityD(r)
defined in Eq.~14!. Equation~5! then becomes

]r~rW,t !

]t
5D~ t !¹2

]F$r%

]r
1h8~rW,t !, ~16!

where the noise term is a Gaussian random field with exp
tations

^h8~rW,t !&50,

^h8~rW,t !h8~rW8,t8!&522TD~ t !¹2@d~rW2rW8!d~ t2t8!#.
~17!

Furthermore, we consider an harmonic approximation for
free energy~8!. Expanding the logarithm to lowest orde
around the average densityr̄ one has

F$r%.
1

2r̄~12 r̄ !
~r2 r̄ !2, ~18!

where constant and linear terms have been discarded s
they do not contribute to Eq.~16!. Substituting Eq.~18! into
Eq. ~16! we arrive at

]r~rW, t̃ !

] t̃
5D~ t̃ !¹2r~rW, t̃ !1h̃~rW, t̃ !, ~19!

where a rescaled timet̃ has been introduced

t̃ 5
1

r̄~12 r̄ !
t ~20!
6-3
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and h̃(rW,t) obeys Eqs.~17! with, instead ofT, a rescaled
temperatureT̃ defined by

T̃5 r̄~12 r̄ !T. ~21!

In the following we will always drop the tilde from both th
rescaled timet̃ and temperatureT̃ since this is unambiguou
and simplifies the notation.

Because of spatial homogeneity it is convenient to c
sider the stochastic equation~19! in terms of the Fourier
transformr(kW ,t) of the density field

]r~kW ,t !

]t
52k2D~ t !r~kW ,t !1h~kW ,t !. ~22!

The formal solution of Eq.~22! reads

r~kW ,t !5r~kW ,0!e2R2(t)k2
1E

0

t

h~kW ,t8!e[R(t8)2R(t)]k2
.

~23!

With Eq. ~23! the two time correlator can be computed as

C~kW ,tw ,t !5e2[R2(tw)1R2(t)]k2
$C~kW ,0,0!1T@e2R2(tw)k2

21#%,

~24!

where we have made use of the noise field correlations~17!.
The whole problem is now reduced to the knowledge

R(t), or, equivalently, ofD(t) sinceR(t) andD(t) are re-
lated through Eq.~15!. In order to calculateD(t)5^M (r)&
one has to compute averages over the appropriate dist
tion probability, P($r%,t), which obeys the Fokker-Plan
equation@11# associated to the Langevin stochastic equat
~22!. The computation ofD(t) can be made asD(t)
5*0

1M (r)P(r)dr, whereP(r) is given in by

P~r!5@2pS2~ t !#e2(r2 r̄)2/[2S2(t)] . ~25!

Then

D~ t !5@2pS2~ t !#21/2E
0

1

M ~r!e2(r2 r̄)2/[2S2(t)]dr.

~26!

With an uncorrelated initial conditionC(k,0,0)5const,
S2(t) can be explicitly calculated from Eq.~24! as

S2~ t !5hDS2R2d~ t !Fd@A2LR~ t !#1qT, ~27!

where Fd@x#5*0
xyd21 exp(2y2)dy, q5(Sd /d)@L/(2p)#d,

h5@d/(LA2)d#, Sd is the surface of thed-dimensional uni-
tary hypersphere, andDS25S2(0)2qT is the difference be-
tween the density fluctuations in the initial and final stat
Since the characteristic fluctuations present in the equ
rium stateSeq

2 are an increasing function of the temperatu
for deep quenches, one can have a rather different valu
this quantity between the initial and the final state. This fa
as will be shown, can produce a markedly out-o
equilibrium dynamical pattern in the preasymptotic time d
03110
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main. Notice that the asymptotic value of the density flu
tuationsS2(`)5qT vanishes at the point of structural arre
r̄51 @since the rescaled temperature vanishes accordin
Eq. ~21!#.

Equations~15!, ~26!, ~27! are a closed set of equation
that will be studied analytically in Sec. VI. From Eq.~24! the
normalized correlator~10! is given by

C̃~kW ,tw ,t !5e2[R2(t)2R2(tw)]k2
. ~28!

This expression obeys a definite scaling formC̃(kW ,tw ,t)
5S@f(t)/f(tw)#, with f(t)5exp$2R2(t)k2%, as suggested
in the framework of a scaling approach to dynamical p
cesses proposed in Refs.@12,13#. The spatially averaged au
tocorrelation obeys

A~ tw ,t !5~4p!2d/2@R2~ t !2R2~ tw!#2d/2. ~29!

VI. SOLUTION OF THE MEAN FIELD MODEL

A. Evaluating the effective diffusivity D„t…

The integral on the left-hand side of Eq.~26! can be
evaluated asymptotically by the steepest descent techn
since the integrand function in Eq.~26! is peaked around
rM(t) given by

~12rM !2~ r̄2rM !5vS2~ t !. ~30!

Notice thatrM(t) approaches the average densityr̄ from
below. This is intuitive because basicallyrM(t) represents
the typical density which drives the dynamics, and this
initially dominated by the evolution of less dense region
the denser being almost frozen. We consider two limiti
cases:~i! r̄2rM(t)@12 r̄ and ~ii ! r̄2rM(t)!12 r̄.

~i! r̄2rM(t)@12 r̄. In this case one has

r̄2rM~ t !.@vS2~ t !#1/3. ~31!

Enforcing the condition~i! one sees that the domain of a
plicability of this solution is

S2~ t !@
1

v
~12 r̄ !3. ~32!

The saddle point evaluation of the integral in Eq.~26! leads
to

D~ t !.expF2
3v2/3

2S2/3~ t !
G . ~33!

~ii ! r̄2rM(t)!12 r̄. From Eq.~30! one has

r̄2rM~ t !.
vS2~ t !

~12 r̄ !2
~34!

which holds when
6-4
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SLOW DYNAMICS AND AGING IN A CONSTRAINED . . . PHYSICAL REVIEW E63 031106
S2~ t !!
1

v
~12 r̄ !3. ~35!

With the solution~34!, Eq. ~26! leads to

D~ t !.expF v

r̄21
G . ~36!

B. Three dynamical regimes

From the solution of the mean field model one shows
existence, for deep quenches with an high density, of th
distinct regimes. We consider them separately below.

1. Regime 1: Pinning

From Eq.~24! it is readily seen that]C(kW ,t,t)/]t is maxi-
mum at k25kM

2 51/@2R2(t)# and it is negligible fork2

!kM
2 . For small t, ]C(kW ,t)/]t is negligible in the whole

physical rangeuku,L, so that practically no evolution is
observed and the system looks pinned for times shorter
a characteristic valuetp ~to be described in details later on!.
Since this is an initial regime we also haveFd@A2LR(t)#
;R(t)d, and consequentlyS(t).S(0) andD(t).D(0).

Notice that, although the spatial configuration of t
coarse grained field is not appreciably changing in this ti
domain, the mean square displacementR2(t) grows as

R2~ t !.D~0!t ~37!

~see Fig. 1!. At first sight the fact that this frozen state man
fests itself with the constancy of all the physical observab
but one can seem unphysical, since one would expect
R2(t) to be a constant. However, it must be observed t
R2(t)2R2(tw)!L22 in this regime, and thatL21 is the
typical size over which the variabler is coarse grained. In an

FIG. 1. The evolution of the particles mean square displacem
R2(t), obtained numerically by means of Eq.~15!, is plotted for a

quench toT51024 and different densities (r̄50.70, 0.80, 0.85,
0.90, 0.93, 0.95, from top to bottom!. In the inset the mean field
behavior, corresponding to the same parameters, is shown. Th
cation of the three regimes described in the text are outlined by
numbers 1, 2, and 3
03110
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hard sphere system this would correspond to a movemen
the particles over distances smaller than the cage siza.
When the density is sufficiently high particles rattle ma
times inside the cages formed by the neighbors. Sincer is a
coarse grained variable describing the structural relaxat
however, it is not influenced by this small-scale evoluti

@the same considerations apply to the observablesC(kW ,tw ,t)
andS(t) as well#. The first regime, then, is essentially due
a cage effect. The increase ofR2(t) will eventually produce
the breakdown of this pinned state. Then the evolution of
coarse grained variabler(rW,t) starts and different dynamica
regimes occur. These considerations clarify that the pre
model describes the structural rearrangements of the mat
but not the small scale evolution inside the cages.

It must be noticed that the existence of a cage effect
fluences the dynamics at any generic time, even aftertp , as
can be monitored by inspection of the two-time correlatio
From Eq.~28!, in fact, one has that]C̃(kW ,tw ,t)/]t is maxi-
mum atk25kM

2 51/@R2(t)2R2(tw)# and it is negligible for

k2!kM
2 . For R2(t)2R2(tw)!L22, ]C̃(kW ,tw ,t)/]t is negli-

gible in the whole physical rangeuku,L, and the two-time
correlator stays constant, as shown in Fig. 2, despite the
tem is not pinned fortw.tp .

2. Regime 2: Slow evolution

Pinning lasts up totp . For t.tp , we haveR(t).L21,
thus particles diffuse out of the cages and the evolut
starts. For sufficiently deep quenches and large densi
condition~32! applies in an intermediate time domain. Mor
over, in this case,DS2 is much larger then the fluctuation o
the low-temperature final stateS(`)5qT, so that the last
term in Eq.~27! can be neglected. Therefore, using the d
termination~33! of the diffusivity D(t) in connection with
Eqs.~15!,~27! we arrive at the following equation forR(t):

nt

lo-
e

FIG. 2. The decay ofC̃(kW ,tw ,t) for a quench toT51024

with r̄50.95 is shown. Different tw are shown (tw

51,104,105,106,107,109,1011,1013, from left to right!. The inset
refers to the mean field behavior, with the same choice of par
eters.
6-5
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dR2~ t !

dt
5expH 23S v

hDS2D 2/3
R~ t !22d/3

Fd@A2LR2~ t !#
J . ~38!

Solving for long times one has

R2~ t !.b~ ln t !d ~39!

with d56/d and

b5FFd~`!~hDS2!2/3

3v2/3 G 6/d

. ~40!

By virtue of Eq. ~24! this implies that, for fixedtw , the
correlator decays as an enhanced power law~see Fig. 2!

C̃~kW ,tw ,t !5exp$R2~ tw!k2%exp$2b@ ln~ t !#dk2% . ~41!

When alsotw.tp , one has

C̃~kW ,tw ,t !5exp$2b„@ ln~ t !#d2@ ln~ tw!#d
…k2%. ~42!

From Eq.~42! it is readily seen thatC̃(kW ,tw ,t) is not a func-
tion of the differencet2tw alone, but depends separately
tw and t. Time translational invariance is not obeyed in th
regime, as shown in Fig. 2.

From Eqs.~27!,~39!, S(t) can be obtained as

S~ t !;~ ln t !23/2 ~43!

~see Fig. 3!. A logarithmic relaxation of the density fluctua
tions is also observed in molecular dynamics simulations
out of equilibrium liquid glass former@14#. From Eqs.
~11!,~39! the spatially averaged autocorrelationA(tw ,t) also
decays logarithmically.

FIG. 3. The density fluctuationsS2(t) are plotted against time

for different densities (r̄50.70, 0.80, 0.85, 0.90, 0.93, 0.95 from
left to right! for a quench toT51024. In the main frame the out-
come of a numerical simulation of Eq.~5! is shown whereas the
inset refers to the mean field solution, with the same parame
The location of the three regimes described in the text are outl
by the numbers 1, 2, and 3.
03110
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Physically, during the second regime the system mana
in order decrease the large fluctuations seeded by the
temperature initial condition. However, this is a complicat
task, since the dynamics is slaved to the slow evolution
the dense region that are almost frozen. Eventually, when
fluctuationsS(t) become comparable to their equilibrium
value, this regime ends and the third, stationary, state is
tered att5te .

3. Regime 3: Equilibrium

For long times,t.te , a simple diffusive behavior is ob
tained becauseD(t) attains asymptotically a constant valu
D(`), as can be easily checked from Eq.~26!. This implies

R2~ t !.D~`!t ~44!

as can be seen in Fig. 1, so that the normalized correl
exhibits the usual exponential decay as a function oft

C̃~kW ,tw ,t !5e2D(`)tk2
e$R2(tw)k2% ~45!

~see Fig. 2!. Whentw.te , one has

C̃~kW ,tw ,t !5e2D(`)[ t2tw]k2
~46!

and time translational invariance is obeyed.

C. Characteristic times

For shallow quenches and small densities the duration
the preasymptotic regimes~1 and 2! is negligibly small and
the equilibrium state is entered from the beginning. This d
ration increases if the system is initially brought very f
away from equilibrium by performing deep quenches with
high density r̄. The role of the temperature jumpDT is
obvious, since increasingDT brings the initial and final
states far away. On the other hand, dense regions, which
initially frozen, are more abundant whenr̄ is increased to-
wards 1, thus slowing the dynamics. Here we make th
considerations more quantitative by explicitly computing t
typical durationtp andte of these regimes. In Fig. 8~inset!
these characteristic durations obtained from a numerical
tegration of the mean field equations are shown.

Moreover, we will also compute the characteristic time
relaxation of fluctuationst rel in the three kinetic regimes
This relaxation time can be computed from the knowledge
C̃(kW ,tw ,t) since, from Eq.~28!, C̃(kW ,tw ,t) is a function
which monotonously decays over a characteristic time in
val t rel(k,tw) defined through

R2~t rel1tw!2R2~ tw!5k22. ~47!

1. Regime 1: Pinning

The durationtp of this first regime can be obtained b
requiring]C(kW ,t,t)/]t to be negligible in the physical rang
uku,L. We compute]C(kW ,t,t)/]t from Eqs.~24!,~37! as

rs.
d
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]C~kW ,t,t !

]t
522k2D~0!@C~kW ,0,0!2T#e22D(0)k2t. ~48!

For small times the maximum of this function in the physic
range uku<L is located atk5L. The requirement tha
]C(uku5L,t,t)/]t must be small can be fulfilled up to
certain time@15#

tp.
ln$2L2D~0!%

2L2D~0!
H 11

ln@qDS2#

ln@2L2D~0!#
J , ~49!

where the constantq and the differenceDS2 between the
density fluctuations in the initial and final states have be
defined below Eq.~27!. tp depends both on the densityr̄ and
Ti through D(0) @see Eq.~26!# and on the quench dept
through DS2. When bothTi and T are held fixed, so tha
DS25const,tp grows asD(0)21 as the density is increased
The explicit dependenceD(0) on r̄ can be estimated in
simple limiting cases. For large values ofTi , since the ther-
mal fluctuations of the initial state are large, condition~32!
applies and, from Eq.~33! one has

D~0!.expF2
3v2/3

2~12 r̄ !2/3G ~50!

since for largeTi one hasS(0).12 r̄. For sufficiently small
Ti , so that condition~35! applies,D(0) can be evaluated
through Eq.~36!

D~0!.expF v

r̄21
G . ~51!

In both cases~50!,~51! one observes a strong divergence
tp(k) as the maximum density is approached.

On the other hand, for fixedr̄ and Ti , so that D(0)
5const,tp depends logarithmically on the density differen
DS2, which increases as the quench depth is increased.
tice that, forDS2,@2qL2D(0)#, pinning is completely ab-
sent.

The typical relaxation time in the pinned statetp
rel(k) as

defined through Eq.~47!, is obtained using Eq.~37! as

tp
rel~k!5

1

D~0!k2
~52!

which does not depend ontw .

2. Regime 2: Slow evolution

During the slow evolution regimeR(t) increases while
S(t) decreases. Therefore, after some characteristic timete ,
at least one of the two conditions we have used to infer
existence of this regime, namely, condition~32! and the neg-
ligibility of the last term on the right-hand side of Eq.~27!,
can no longer be fulfilled. Given the time dependence~43! of
S(t) in this stage the equilibration timete is
03110
l
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te5min$M 21~ r̄ !,exp~Seq
2 !21/3%, ~53!

whereSeq
2 5qT are the density fluctuations in the equilibriu

state. From Eq.~53! it is seen that for very small~fixed! final
temperatures, since exp(Seq

2 )21/3 is very large,te;M 21( r̄)
divergesá la Vogel-Fulcher asrc is approached. The mecha
nism leading to the equilibrium state in this case is an un
tivated structural rearrangement of dense regions which ta
place atT50 as well. On the other hand, if the density
kept constant to a high value, the equilibration time diverg
with decreasing temperatures in a modified Arrhenius fo
te;exp(qT)21/3. In this case equilibration is achieved b
thermal fluctuationsshaking the frozen regions and, there
fore, is due to an activated mechanism.

The characteristic relaxation timets
rel(k,tw) in the slow

evolution regime can be computed through Eqs.~39!,~47! as

ts
rel~k,tw!5expF 1

bk2
1~ ln tw!dG 1/d

2tw . ~54!

From Eq.~54! we see that, due to the lack of time transl
tional invariance, the relaxation time depends ontw . For
large waiting timests

rel(k,tw) grows linearly withtw ~apart
from logarithmic corrections!, namely, ts

rel(k,tw)
.tw /@dbk2(ln tw)d#. Furthermore, since from Eq.~40! one
hasb;(DS2)3/d, one sees that, for fixedtw , ts

rel(k,tw) is a
decreasing function ofDS2, that is of the quench depth.

3. Regime 3: Equilibrium

The equilibrium relaxation timet0
rel(k) can be easily com-

puted through Eqs.~44!,~47! as

t0
rel~k!5

1

D~`!k2
~55!

which does not depend ontw , due to the time translationa
invariance. At the point of structural arrest the density flu
tuation of the equilibrium state vanish, so that, through E
~36!, one hasD(`).M ( r̄). We recover then the Voghel
Fulcher law~1!, the relation that has long been known in th
literature of viscous fluids and glasses and that was first th
retically obtained by Adam and Gibbs with theircooperative
rearrangement theory. This justifiesa posteriori the phe-
nomenological assumption~7! for the mobility.

VII. THE FLUCTUATION-DISSIPATION RATIO

An important issue to understand the off-equilibrium d
namics is the relation between the correlation function in
unperturbed situation,C(kW ,tw ,t), and the response functio
of the system to a small perturbing external fieldh(rW,t)
coupled via a term2*drWhr in the free energy. This leads
instead of Eq.~22!, to

]r~kW ,t !

]t
52k2D~ t !r~kW ,t !1k2D~ t !h~kW ,t !1h~kW ,t ! ~56!
6-7
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so that

r~kW ,t !5r~kW ,0!e2R2(t)k2
1E

0

t

@h~kW ,t8!

1k2D~ t8!h~kW ,t8!#e[R(t8)2R(t)]k2
. ~57!

The integrated response function

x~kW ,tw ,t ![E
tw

t dr~kW ,t !

dh~kW ,t8!
dt8 ~58!

reads

x~kW ,tw ,t !512C̃~kW ,tw ,t !. ~59!

The quantitiesx andC in equilibrium are linked one to the
other since the fluctuation-dissipation theorem@16# states
that

X[2T
]x~kW ,tw ,t !

]C~kW ,tw ,t !
51. ~60!

In off-equilibrium situations this relation is violated an
generally,X, the fluctuation dissipation ratio, is a function
t and tw @17#.

In the present mean-field model, we can readily evalu
X as

X~ tw ,t !5TC21~kW ,tw ,tw!, ~61!

namely, the inverse of the structure factor computed atw
times the bath temperature. The parametric plot ofTx vs C
~fluctuation dissipation plot! is shown in Fig. 4; for everytw

FIG. 4. Fluctuation dissipation plot. The integrated respo

x(kW ,t,tw) is plotted againstC(kW ,t,tw) in mean field fork5p/2 and
different waiting times (tw5150,230,350,2000 from left to right!.
The temperature of the quench isT51024 and the average densit

r̄50.95. In the inset the time evolution of theeffectivetemperature
Teff is shown.
03110
te

it is represented by a straight line whose slope slowly
proaches 1 whentw grows, suggesting thatTeff5TX21 plays
the role of aneffectivetemperature@18# slowly approaching
the bath temperature from above. Notice thatX depends on
tw alone. This feature can be compared with recent inve
gations of the response of supercooled liquids in molecu
dynamic simulations. In Ref.@19# a similar behavior with a
tw-dependentinternal temperature is observed for theinter-
basinresponse, namely, for larget2tw , of a Lennard-Jones
binary mixture. For smallt2tw the response proves thein-
trabasin vibrational dynamics, in equilibrium at the bat
temperature, which, in the present approach, is integrated
by the coarse-graining procedure. Interestingly, in the st
of fluctuation-dissipation relations and violations of the eq
librium FDT, a functionX depending only ontw has also
been found in models for granular media@20# and in experi-
ments on structural glasses@21#.

VIII. NUMERICAL SOLUTION: METHODS AND
RESULTS

We now proceed to the study of Eq.~5! by means of
numerical simulations. We have integrated Eq.~5! in the
presence of the mobility~7! on a two-dimensional squar
lattice with mesh sizeDx and periodic boundary condition
in all directions@22#. Both spatial derivatives and time inte
gration have been approximated by an Euler first order
cretization scheme.

Regarding time discretization, since the density fluctu
tions are initially very large, due to the high-temperatu
initial condition, a small value ofdt is required at the begin
ning of the simulation in order to avoid numerical instabi
ties. However, for longer times, fluctuations decay~see Fig.
3! and larger values ofdt can be used. Moreover, for dens
systems, the degree of instability of Eq.~5! is greatly tamed
by the smallness ofM (r). The value ofdt can therefore be
adjusted according to the average densityr̄. The speed of the
computation, then, can be greatly enhanced by selectin
appropriate initialdt for each value ofr̄ and then using an
adaptive time step technique that successively increas
properly as time goes on. With this trick very long relaxati
times for high density systems can be accessed. For sp
discretization we simply takeDx51.

The presented results have been obtained by avera
over ten different initial configurations for lattice sizeL
5128. The sample is quenched rapidly from high tempe
ture to the working temperatureT which is reached at time
t50. The initial conditionr(rW,t) which describes the homo
geneous state with random fluctuations at a very high te
perature before the quench is given byr(rW,t)5 r̄

1dr(rW,t), wherer̄ is the average density, which will remai
constant during time evolution, anddr(rW,t) are random
numbers uniformly distributed in@0,12 r̄ #. The system is
subsequently allowed to evolve at constant temperaturT
according to Eq.~5!.

We present results for different temperatures and aver
densitiesr̄. The behavior of samples with differentr̄ shows

e
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that, for densities up tor̄.0.7 a simple diffusive behavior is
observed, corresponding to anormal liquid region. Here the
mobility remains of order 1 all over the system. In this ca
the behavior of all the observables introduced in Sec. IV
be computed analytically by lettingM (r)5const in Eq.~5!;
we have tested this hypothesis numerically. The decay of
average density fluctuationsS2(t), for instance, is plotted in
Fig. 3. For low densitiesS2(t) very quickly decays to the
constant value characteristic of the equilibrium state. T
mean square displacementR2(t), shown in Fig. 1, behave
linearly and the autocorrelation functionC̃(kW ,tw ,t) of the
system has an exponential decay, as expected for a si
liquid.

By raising the density, one gradually enters a differe
regime where the vanishing of the mobility slows the dyna
ics: this produces an off equilibrium glassy behavior, bef
the equilibrium state is entered, that becomes more evid
as density is increased towardr̄51. The behavior ofS2(t)
shows that, for large densities, the dynamics can be divi
in three regimes. Initially, fort smaller than a characteristi
time tp , S2(t) remains constant. This is the first regim

FIG. 5. Snapshots of the local densities in the system show

different times from the quench instant onward, forr̄50.95 and
T51024. Parts of the figure referred to as~a!–~d! are counted
clockwise starting from top-left. Dark spots are denser regions.~a!
shows the initial high-temperature disordered configuration, cha
terized by large density fluctuations. As time goes on, the syste
practically pinned in the initial configuration up to a characteris
time tp5750~b!. This is the first dynamical regime. Fort.tp , less
dense regions equilibrates whereas high density zones are still
tically frozen and pronounced spatial heterogeneities are obse
This is shown in~c!, where the configuration at the timet5108,
belonging to the second regime, is shown. Only after long times
systems becomes spatially uniform again and equilibrium is
tained, as show in~d! at t51012.
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Then, fort.tp , a second regime is entered characterized
the decrease ofS2(t). Eventually equilibrium is achieved
andS2(t) reaches a constant value.

This whole pattern is reflected in the behavior of the p
ticle mean square displacementR2(t), which is plotted in
Fig. 1. As the density is increased toward the limiting val
rc51, the behavior ofR2(t) shows evident deviations from
a linear growth typical of Brownian motion. In the first re
gime R2(t) grows linearly in time. The inflection region in
the intermediate time domain corresponds to the second
gime. This becomes more pronounced when the densit
increased. Then, in the equilibrium state,R2(t) keeps grow-
ing linearly again. The three dynamical regimes characte
tic of dense systems will be discussed in detail separa
below.

A. Regime 1: Pinning

Let us consider thesnapshotspictures, as those presente
in Fig. 5, showing the system during the dynamical evo
tion. In this figure the configuration of a system withr̄
50.95 quenched from an high temperature initial state toT
51024 is shown at different times. Here the gray scale c
responds to the value of the densityr(rW,t), the darker re-
gions being the denser@black corresponds tor(rW,t)51].
The first plot represents the system in the initial hig
temperature state at timet50 while the second picture
shows the situation at timetp5750. From the observation o
these two figures one sees that initially, for times up totp ,
the system is blocked and practically no evolution is o
served. Large density fluctuations, seeded in by the h
temperature initial condition, are frozen and the system
trapped. This pinning phenomenon is reflected by the beh
ior of both C(kW ,tw ,t) andS2(t), as shown in Figs. 2 and 3
respectively, which remain constant in this time domain.

B. Regime 2: Slow evolution

The second regime is entered att;tp and lasts up tot
;te . The typical configuration of the system in this tim

at

c-
is

ac-
ed.

e
t-

FIG. 6. The spatial heterogeneous pattern in theslow regime~c!
is outlined by a slow decay, as a function ofk, of the structure

factor C(kW ,t), plotted here againstk2m, with m51/6. C(kW ,t) is

consistent with a non-Gaussian fit:C(kW ,t).Ce2[ l (t)k] 2m
. Different

curves from top to bottom refer to increasing times belonging to

second regime, withr̄50.95 andT51024.
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domain corresponds to the picture in the third column of F
5. Here one observes that less dense regions equilib
whereas high density zones are still practically frozen. Af
a while this gives rise to pronounced correlated spatial h
erogeneities. This spatial pattern is outlined by a slow dec
as a function of k, of the structure factorC(kW ,t)
5^r(kW ,t)r(2kW ,t)&, that is consistent with a stretched exp
nential fit:

C~kW ,t !.Ce2[ l (t)k] 2m
~62!

with m.1/6 ~at variance with the usual Gaussian decay
standard diffusion!, as shown in Fig. 6. Dynamical heterog
neities are related to cooperative rearrangements of part
in glassy states owing to configurational restrictions. Such
idea was first put forth by Adam and Gibbs@8# who intro-
duced the idea of cooperatively rearranging regions. In
second regime the kinetics, in fact, is ruled by the co
strained evolution of spatial heterogeneities with larger,
which produce aslow dynamics. The two time correlator
C(k,tw ,t) andA(t,tw), shown in Figs. 2 and 7 decay corr
spondingly more slowly than an exponential. Moreover o
sees that time translational invariance is lacking since a

FIG. 7. A(t,tw) is plotted againstt2tw for different values oftw

~increasing from left to right!, at r̄50.95 andT51024.

FIG. 8. The characteristic timestp and te are plotted agains

1/(12 r̄) for T51024. The main picture refers to the numeric
calculations while in the inset the mean field behavior is shown
03110
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sible dependence on the waiting timetw is observed. In Fig.
8 tp and te obtained through the numerical solution of th
model are plotted as function of the density: the behavior
the relaxation times is consistent with an exponential div
gence, as found in mean field.

1. Regime 3: Equilibrium

After a characteristic timete , the strong spatial heteroge
neities observed in the second regime decay and the sy
enters an asymptotic stage characterized by small temp
ture fluctuations around the average densityr̄, as shown in
Fig. 5. This regime corresponds to an equilibrated st
where time translational invariance is obeyed and the a
correlation function decays exponentially, as shown in F
9.

IX. CONCLUSIONS

In this paper we have studied the schematic model in
duced in Ref.@1# for the description of the out of equilibrium
kinetics of supercooled fluids and glassy systems above
temperature of structural arrest. It consists of a diffus
equation with a mobility in the manner of Vogel-Tamma
Fulcher in contact with a thermal bath. A detailed analy
has been carried out both analytically in a mean field
proach and numerically. The main result is the character
tion of the gradual crossover between anormal liquidbehav-
ior, where a simple diffusive relaxation with exponential
damped correlations is found, and a glassy behavior wh
the existence of heterogeneities produces strong
equilibrium effects. Some properties that are observed in s
tems close to the glassy transition, such as the existenc
strong spatial heterogeneities, anomalous diffusion, slow
cay ~such as enhanced power law!, aging of density autocor-
relation functions, a non trivial fluctuation dissipation rat
X(tw), dynamical scaling with time, are exhibited by th
model.

The relative simplicity of the model allows us to mak
rather precise quantitative predictions which could be,

FIG. 9. C(k,t,tw) is plotted in the equilibrium regime agains

t2tw for r̄50.95, T51025.
6-10
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SLOW DYNAMICS AND AGING IN A CONSTRAINED . . . PHYSICAL REVIEW E63 031106
principle, tested in experiments on glassy systems. Mo
over, the model can be generalized in a rather straight
ward way to study the effect of a gradual cooling proced
~this is the situation generally achieved in experiments!, or to
investigate the dynamics of a supercooled fluid subject to
external drift, such as a shear flow@23#.
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APPENDIX A: THE COARSE GRAINED FREE ENERGY

We consider an assembly of particles of typical sizel and
density r̄, with an hardcore repulsive interaction, random
moving on ad-dimensional space. Although particles mo
continuously in time and space one can introduce an appr
mation by assuming the existence of a lattice and requi
that, due to the hardcore interaction, the occupation num
of each lattice site can only take the values 0,1. This g
lattice model can be described in terms of a coarse-gra
variabler(rW) representing the average particle density ins
a box of typical sizea centered atrW. Since particles do no
interact, the only contribution to the free energy of this s
tem comes from the entropyS. Let us consider a box con
taining N lattice sites. Classically the number of distinguis
able way forn(rW) particles to occupy the box is given by

g~rW !5
N!

n~rW !! @N2n~rW !#!
. ~A1!

Then the contributionS(rW) to the total entropy coming from
the box is

S~rW !5 ln
N!

n~rW !! @N2n~rW !#!
. ~A2!

For largeN, using the Stirling approximation, the entropy p
lattice sites(rW)5S(rW)/N reads

s~rW !.2r~rW !ln r~rW !2@12r~rW !# ln@12r~rW !#, ~A3!

where we have usedr(rW)5n(rW)/N. With Eq. ~A3! the free
energyF$r% is obtained through

F$r%

T
5E drW$r~rW !ln r~rW !1@12r~rW !# ln@12r~rW !#%,

~A4!

whereT is the absolute temperature.
The lattice-gas approximation is a reasonable assump

if ~i! the lattice constantDx is larger thenl and ~ii ! the
density of the particles is small. Condition~i! allows one to
identify the position of a particle with a single site. In th
03110
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case the approximation amounts to neglecting the detail
the spatial distribution of the particles on scales smaller t
Dx: This is appropriate when the mean free pathl of the
particles is large as compared toDx that is for small densi-
ties. This leads to condition~ii !. For high particle concentra
tion, on the other hand,l! l , so that the details of the par
ticle spatial distribution on scale smaller thenDx becomes
relevant. In this case conditions~i! and ~ii ! cannot be con-
temporary fulfilled and the approximation, in principl
breaks down. In particular Eq.~8! ceases to be valid. Never
theless, in the following we will still retain the free energ
Eq. ~8!, since we expect that the far-from-equilibrium pro
erties of the system can be well described, provided a s
able form of the mobility, as discussed in Appendix B,
assumed.

APPENDIX B: A DERIVATION OF ADAM-GIBBS
MOBILITY

A functional form of the mobility has been obtained
different approximations by several authors in apparen
heterogeneous context as the free-volume theory of the g
transition or ‘‘car-parking’’ problems in one dimensio
@5,6,8#. Here we show a simple argument from free-volum
theories, in a spirit very similar to the work by Boutreau
and de Gennes@6#.

Let us consider again the hard spheres system introdu
before. The ‘‘free volume’’ can be defined as the excess
volume which can be redistributed in a box, with a giv
density, by rearranging particles positions. The average
volume per particle is

Vf5
12r~rW !

r~rW !
. ~B1!

We can now make the reasonable hypothesis that the d
bution P(V) of empty spacesV decays exponentially on
scales of orderVf

P~V!5
1

Vf
e2V/Vf . ~B2!

Now we can estimate the probabilityM $r% of a particle to
make a move at a given time, considering that it cannot e
regions of empty space smaller that its own volumeb, as

M $r%5E
b

`

P~V!dV5e2b/Vf5e2br/(12r). ~B3!

Notice the essential singularity atr51 caused by the de
nominator in the exponent. Since the density dependenc
the numerator, instead, does not produces sensible di
ences we will replace it with a constant, for simplicity. W
then consider the following form:

M $r%5e2v/(12r). ~B4!

With this form of the mobility Eq.~5! specifies the mode
studied throughout this paper.
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