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We carry out a complete analysis of the schematic diffusive model recently introduced for the description of
supercooled liquids and glassy systems above the glass temperature. The model is described by a trivial
equilibrium measure and the presence of kinetics constraints is mimicked through a rapidly decreasing mobility
at high particle density. The governing equation describing a sudden quench process is investigated analyti-
cally in a mean field approach and by means of numerical simulations. For deep quenches a long lasting
off-equilibrium dynamics is observed in dense systems before equilibration is achieved, where time transla-
tional invariance lacks and the system ages. The kinetics is slow in this time domain since the average particle
diffusivity D decreases in time, as opposed to the standard diffusion case of a céndteattis recovered only
in equilibrium. The autocorrelation function decays slower than an exponential, falling in mean field as an
enhanced power law. The linear response function is computed and the modalities of the break-down of the
fluctuation dissipation theorem are analytically investigated, showing thaffantivetemperature can be
defined which slowly approaches the bath temperature from above.
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[. INTRODUCTION guoted theory applies in a region located well before the
ideal glass point, whereg is found experimentally to di-

When glass-forming liquids are supercooled below theverge according to the Vogel-Fulcher |d@2]
melting temperature their dynamical properties undergo dra- _
matic changes and, in particular, the equilibrium relaxation ro~exfv(p.—p) 11, 1
time 7 increases of several orders of magnitude. The sche- o
matic scenario about the microscopic origin of this slowingwhere p and p. are the average particle density, and the
down is generally believed to be the following: a particle critical density, respectively. Therefore we do not have in-
does not perform a Brownian motion in the fluid but rattlesformation from the theoretical point of view on the dynami-
many times insidecagesformed by the surrounding mol- cal behavior close to the glassy transition where standard
ecules. The motion of a particle over distances larger thatheories do not apply. However, since glassy features are
the typical cage size is severely suppressed when the densityainly of a kinetic nature, it is important to establish how
is high because configurational restrictions require a coopthem depend on the details of the dynamics.
erative rearrangement of many particles antbmplexslow In a recent papelrl], a simple diffusive model has been
dynamics is originated. Hard spheres are kn¢@irto repro- introduced to describe the slow relaxation process in super-
duce these features and can be considered, therefore, asa@oled fluids near the dynamical transition and related glassy
simple paradigm: kinetic constraints are themselves resporsystems. The model aims to describe the main features of the
sible for dynamical features, the equilibrium measure beingout-of-equilibrium dynamics above the temperature of struc-
in this case, trivial. Thermodynamic observables are, in gentural arrest. It is schematic in spirit and, in order to be ge-
eral, rather regular along the glass transformation of manyeric, leaves aside as much system specific details as pos-
systems. When the characteristic duratigrof this coopera- sible. The basic assumption is that a good deal of the
tive process exceeds the observation time the glass appeasmplex behavior observed in glassy systems can be en-
out of equilibrium. Structural rearrangements in this case beeoded into a conventional diffusion equation by means of a
come slower and slower as time goes on and the system ageslitably chosen particle mobilityl. Since particle motion in
Time translational invarianc€l Tl) is lost and the response real systems is severely suppressed in high density regions,
to an external perturbation depends ondlgeof the system, due to kinetic constraints, the mobility is assumed to be a
that is the time elapsed since its preparation. The fluctuatiordecreasing function of the density that vanishes as an arrest
dissipation theoreniFDT) is thus violated. densityp. is approached. These being the only ingredients,

In the main approach to glassy kinetics, the mode couthe model appears to be in the spirit of the Kob and Ander-
pling theory[3], the dynamical equations are solved by re-sen mode[4], although the present approach is in the con-
summing a nontrivial set of diagrams and a glass transitioninuum. M is chosen phenomenologically in order to repro-
appears as a purely dynamical effect. This theory predicts aduce the relaxation timél) observed in this region. The
equilibration timery, which diverges as a power law at the same form oM, however, has been obtained by several au-
dynamical transition. Today it is well establishigd] that the  thors in apparently heterogeneous contexts such as car park-
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ing problemd5] or free volume theories of the glass transi- where M{p} is a mobility (we assume thal does not de-
tion [6] (a sketch of this approach is given in Appendix B pend explicitly on space, due to homogeneity and isotropy,
The advantage of the present model is in its generality andor on time because of TYlthat will be discussed below.
simplicity, which allows one to compute the behavior of dif- With Egs.(2),(4) we arrive at the following diffusion equa-
ferent observables by numerical simulations or analyticallytion for the coarse-grained variabtér ,t):
in a mean field approximation.

In this paper a quench process is considered: a system in f?p(F,t)
equilibrium at a very high temperature is suddenly brought to e \Y
a very low temperature. Our main result is the observation of

a long lasting preasymptotic aging dynamics, before thenccording to the fluctuation-dissipation theorem, the expec-

equilibrium state is entered. In this preasymptotic time do+ iy values of the noise fielg(r t) are given by
main the system evolves out of an initially pinned state, '

which is due to the cage effect, by means of a slow dynamics <77(F,t)> -0,

characterized by a progressive decrease of the particle mo-

bility. This glassy behavior is due to the existence of man > IO > o ,
timg scalesgJ bec)guse dense regions are almost frozen gnén(r,t)n(r 1)) = = 2TV{M{p}V[a(r—r") a(t—t )]}&6)
evolve slowly whereas less dense regions proceed quickly
towards local equilibration. In this regime the autocorrelationwhere<. .-} indicates ensemble averages and temperature is
function decays slower than exponentially, falling as an enmeasured in units of the Boltzmann constagt Equation
hanced power law in mean field. Both TTI and the FDT ares) is fully specified by assigning the form ®{p} and of
violated, the system being far from equilibrium. In meanpg{,1 with Eq. (5) it will be shown that, for low tempera-
field the modalities of the FDT break down can be analyti-yyres, the characteristic relaxation time in the equilibrium

cally considered and aeffectivetemperature of the system state behaves &lel(;). Then, in order to reproduce the

can be introduced which slowly approaches the bath Mabserved behaviofl) of the relaxation time, we consider a
perature from above.

The plan of the paper is as follows. In Sec. Il the modelphenomenologlcal density-dependent local mobility

OF
M{p}V ;ﬁ

+7(r,1). (5)

kinetic equation is introduced. In Sec. Il the dynamical pro- eulp(r)-11"1 o p<1
cess is specified by introducing the quench parameters. In M(p)= ' (7)
Sec. IV the main observables are defined. Section V is de- 0 for p>1,

voted to the formulation of the mean field approximation.

Section VI presents the analytical solution of the mean field!N€répc has been rescaled to unity, for simplicity. A similar
equations. In Sec. VIl the breakdown of the FDT is consid-form has also been derived in different approximations by

ered in mean field. In Sec. VIII the results of the numericalS€Veral authorgs,6,8. A sketch of its derivation in the spirit
simulation of the full model are presented. We draw ourOf ffé€ volume theories is reported in Appendix B. Regard-

conclusions in Sec. IX. ing the free energy, given that the essence of the glassy be-

havior is expected to be encoded into the fofm of the
Il. KINETIC EQUATION moplhty, we con&dey the smple for.m appropriate for a gas-
lattice model of noninteracting particles
We consider an assembly of particles im-@imensional Fipl
. : ) . o p o . _ _
spgce. Th|§ system is .descrlbed in terms (?f a coar§e .gra-med - :f dr{p(N)In p(r)+[1—p(N)]IN[1=p(N]} ©®)
variablep(r) representing the average particle density inside

a box of typical sizea centered at. Since the overall num- whose derivation is recalled in Appendix A.
ber of particles is conserved during the evolution, the dy-

namics is properly described by a continuity equation lll. QUENCH PROCESSES

&p(F,t)
ot

Throughout this paper we will concentrate on the dynam-
ics of the model following an instantaneous temperature
quench at timg=0 from an initial equilibrium state at the
where the Langevin stochastic term(r,t), that will be  temperatureT; to a final lower temperatur@. It must be
specified belowEgs.(6)], takes into account the temperature observed that the equilibrium state of the model is com-

=—V-J{p}+n(r,y), 2

fluctuations. From the chemical potentja{p} pletely disordered, for every value of the temperature, since
particles are not interacting. However, although the initial
wlp)= IF{p} 3) and final states are trivial, the dynamical pattern that con-

nects them will be shown to be highly nontrivial.
_ _ . Cooling experiments on glass-former liquids are always
whereF{p} is the free energy density of the considered sysperformed with a finite cooling rate in this case one usu-

ap

tem, the currenf{p} is obtained 7] as ally observeq?] that a larger brings a supercooled liquid
R out of equilibrium beforegat higher temperaturgshan for
Hp}t=—M{p}Vuip}, (4)  smaller cooling rates. In the present approach it is possible to
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take into account the effect of a finiteoy introducing a time Experimentg9] as well as numerical simulatiof&0] are

dependent temperatufein Egs.(6); this, however, increases very often concerned with the behavior of quantities related

the difficulty of the analytic approach that will be discussedto the microscopic motions of particles. In the present con-

in Sec. V. Therefore in the present paper we will only con-test we consider the average diffusivity

sider the case of an instantaneous quench, living the analysis

of a continuous quenching to a forthcoming article. More- D(t)=(M{p}) (14)

over, it is reasonable to consider a series of instantaneous, . -
. : _ which does not depend on the position, due to space homo-

shallow quenche§.e., with a small value oAT=T;—T) as . . .

a paradigm of a continuous quench with a small cooling rategen,f'}y' _Actuall)l/,D(t)?t IS :_he m(?{an dlst?r?ctet:]raveled tt')ty a

whereas a deep quenéwith AT large can be regarded as E%rt'c ed|r]l andeé)emen ary time staft so that the quantity

an extrapolation of a case with largeFrom the analysis of (t), defined by

the dynamical properties of the model that will be made in t

the following sections, in fact, it will be clear that a markedly R2(t)= f D(t")dt’ (15

out-off-equilibrium behavior is observed in the case of a 0

deep quench, whereas the evolution is always nearby eq

Ulié resents its mean square displacement since the quench
librium for sufficiently shallow quenches. P g P q

time, the motion being diffusive.

IV. OBSERVABLES V. A MEAN FIELD APPROACH

In this section we introduce the most important observ-
ables for the description of the dynamics of E8), that will  \,pjinearities involved in boti(p) andF{p}. In order to
be explicitly computed in a mean field approximation in Sec.ae some analytical progress we resort to some approxima-
VI and numerically in Sec. VIIl. The main quantity for the s that will be shown to provide a description in substan-

study of the time decay of fluctuations is the correlatorijg| agreement with the outcomes of the direct numerical in-
C(k,ty,t), namely the Fourier transform of the real spacetegration of Eq(5) discussed in Sec. VIII.

Equation(5) cannot be solved analytically because of the

two-time density-density correlation functio@.(K,ty,t) is We introduce anean fieldapproximation on the mobility
defined by term by replacingV (p) with the effective diffusivityD(p)
defined in Eq.(14). Equation(5) then becomes
C(k’tW!t):<p(k!tW)p(_k!t)>! (9) N
P pvz TP (16)
where p(IZ,t) is the Fourier transform of the density field ot ap KA

p(r,t). The normalized correlatc(k,ty, 1), defined by where the noise term is a Gaussian random field with expec-

o C(R,ty 1) tations
C(k,ty t)y= —=—— (10 , 2
C(k,ty,tw) (n'(r,1))=0,
will be also considered and then site autocorrelation (n'(F,t)n’(F’,t’»: —2TD(t)V2[§(F— F’)é(t—t’)].
] 17
- - d% . -
Aty t)={p(r,ty)p(r,t))= f 3 C(k,ty,,1), Furthermore, we consider an harmonic approximation for the
k<A (27) free energy(8). Expanding the logarithm to lowest order

1D around the average densjtyone has
whereA is a phenomenological ultraviolet momentum cutoff

of ordera™!. These quantities are usually studied in numeri- Flpl= ———
cal simulations and real experiments. The spatial distribution 2p(1—p)

of the density fieldp(F,t) can be studied through the equal

time correlatpr, the so-cql!ed structure fac(CJ(rkzt,t). The they do not contribute to Eq16). Substituting Eq(18) into
existence of inhomogeneities can also be monitored by coNM=,"(16) we arrive at

puting the average squared amount of density fluctuations

(p—p)?, (18)

where constant and linear terms have been discarded since

— ap(r.t) - e
SP(t)=([p(x,t)—p]?) (12 5 =D(1)V2p(r,t)+n(r,1), (19
which can be obtained from the knowledge of the structure -
factor as where a rescaled time has been introduced
. - - 1
Sz(t)=(27r)_df C(k,t,t)dk. (13 t=———t (20)
k<A p(1—p)
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and 7(r,t) obeys Eqgs(17) with, instead ofT, a rescaled Main. Notice that the asymptotic value of the density fluc-
temperaturdl defined by t_uationsSZ(OO)qu vanishes at the point of structural arrest
- p=1 [since the rescaled temperature vanishes according to
T=p(1-p)T. (21)  Ea.(2D]

Equations(15), (26), (27) are a closed set of equations
In the following we will always drop the tilde from both the that will be studied analytically in Sec. VI. From E@4) the
rescaled timd and temperatur@ since this is unambiguous Nnormalized correlatof10) is given by
and simplifies the notation.

Because of spatial homogeneity it is convenient to con- C(K,ty, ) =e [RO-R(IK, (28
sider the stochastic equatiqd9) in terms of the Fourier
transformp(k,t) of the density field This expression obeys a definite scaling fofgk,t,, ,t)

=8 p(t)/ p(t,)], with @(t)=exp{—R(H)k?}, as suggested
ap(lz,t) ) - - in the framework of a scaling approach to dynamical pro-
o = KDOpk )+ (k). (22)  cesses proposed in Refd2,13. The spatially averaged au-
tocorrelation obeys

The formal solution of Eq(22) reads
Alty,t)=(4m) PRY(t) -R(t,)] % (29

p(K,H)=p(K,0) e~ RO f (k) elRE RO
0
(23)

VI. SOLUTION OF THE MEAN FIELD MODEL

A. Evaluating the effective diffusivity D(t)

The integral on the left-hand side of E(R6) can be

- o [R3(t) + RROIKS ~( 2R2(t,)k%_ evaluated asymptotically by the steepest descent technique
Clktw.t)=¢ ’ {C(k,0,0+T[e 115, since the integrand function in E¢26) is peaked around

(24 pu(t) given by

where we have made use of the noise field correlatitiis 90— w2

The whole problem is now reduced to the knowledge of (1=pm)“(p=pm) =vS (D). (30)
R(t), or, equivalently, ofD(t) sinceR(t) andD(t) are re- ] —
lated through Eq(15). In order to calculat®(t)=(M(p))  Notice thatpy(t) approaches the average densityfrom
one has to compute averages over the appropriate distrib@elow. This is intuitive because basicaly,(t) represents
tion probability, P({p},t), which obeys the Fokker-Plank _th.e. typical Qensny which drlves.the dynamics, and th_|s is
equation[11] associated to the Langevin stochastic equatiorinitially dominated by the evolution of less dense regions,
(22. The computation ofD(t) can be made ad(t) the densgr being aImoit frozen._We con5|der_two limiting
=[5M(p)P(p)dp, whereP(p) is given in by casesli) p—pu(t)>1—p and(ii) p—pu(t)<1l—p.
(i) p—pm(t)>1—p. In this case one has

With Eq. (23) the two time correlator can be computed as

P(p)=[27SH(t)]e” (=M 2SN, (29
p—pm(D=[vS*(1)]*, 31
Then p—pm(t)=[vS(1)] (31)
1 B Enforcing the conditior(i) one sees that the domain of ap-
D(t)=[27782(t)]*1’2J M(p)e~ (P-P) 1201 g . plicability of this solution is
0
(26)

1 _
SA(t)>—(1—p)°. (32
With an uncorrelated initial conditiol©(k,0,0)=const, v

SA(t b licitl Iculated fi Ed24
(t) can be explicitly calculated from Eq24) as The saddle point evaluation of the integral in E26) leads

S2(t)=hASPR (1) D[ V2AR(t)]+qT, (27 o

where ®4[x]=[3y? T exp(—yddy, q=(24/d)[A/(2m)]Y, 323

h=[d/(A+2)], 3 is the surface of the-dimensional uni- D(t)~exp — 250 | (33
tary hypersphere, antiS?= S?(0)—qT is the difference be-

tween the density fluctuations in the initial and final states. ... — —

Since the charaé/teristic fluctuations present in the equilib- (i) p=pu(t)<1=p. From Eq.(30) one has

rium stateSﬁq are an increasing function of the temperature, 2t

for deep quenches, one can have a rather different value of p—pult vt (34)

this quantity between the initial and the final state. This fact, B (1—p)?
as will be shown, can produce a markedly out-off-
equilibrium dynamical pattern in the preasymptotic time do-which holds when
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FIG. 1. The evolution of the particles mean square displacement
R2(t), obtained numerically by means of E({5), is plotted for a o
quench toT=10"* and different densitiesp=0.70, 0.80, 0.85, FIG. 2. The decay ofC(k,t,,t) for a quench toT=10"*
0.90, 0.93, 0.95, from top to bottomin the inset the mean field with p=0.95 is shown. Differentt, are shown {,
behavior, corresponding to the same parameters, is shown. The le=1,1¢%,10°,1¢F,107,10°,10'%, 10", from left to righd. The inset
cation of the three regimes described in the text are outlined by theefers to the mean field behavior, with the same choice of param-
numbers 1, 2, and 3 eters.

(1)< }(1_;)3. (35) hard sphere system f[his would correspond to a movem_ent of
v the particles over distances smaller than the cage aize
When the density is sufficiently high particles rattle many
With the solution(34), Eq. (26) leads to times inside the cages formed by the neighbors. Sinisea
coarse grained variable describing the structural relaxation,
however, it is not influenced by this small-scale evolution

[the same considerations apply to the observa@(efstw Ry
andS(t) as well. The first regime, then, is essentially due to
acage effectThe increase oR?(t) will eventually produce

the breakdown of this pinned state. Then the evolution of the

From the solution of the mean field model one shows the . . > . .
existence, for deep quenches with an high density, of threcoarse grained variabje(r,t) starts and different dynamical

distinct reaimes. We consider them separately below egimes occur. These considerations clarify that the present
9 ' P y ' model describes the structural rearrangements of the material

but not the small scale evolution inside the cages.
It must be noticed that the existence of a cage effect in-
From Eq.(24) it is readily seen thatC(K,t,t)/dt is maxi-  fluences the dynamics at any generic time, even afferas
mum at k?=kZ, =1[2R?(t)] and it is negligible fork?  can be monitored by inspection of the two-time correlations.

<kZ,. For smallt, dC(k,t)/at is negligible in the whole From Eq.(28), in fact, one has thaiC(kt,,,t)/dt is maxi-
physical rangelk|<A, so that practically no evolution is mum atk?=kg,= L[ R?(t) — R?(t,,)] and it is negligible for
observed and the system looks pinned for times shorter thagP<k2, . For R(t) — R%(t,,) <A 2, aC(K,ty,t)/dt is negli-
a characteristic value, (to be described in details laterjon gible in the whole physical rang&|<A, and the two-time
Since this is an initial regime we also hade[ V2AR(t)] correlator stays constant, as shown in Fig. 2, despite the sys-
~R(t)¢, and consequentl$(t)=S(0) andD(t)=D(0). tem is not pinned fot,> 7,.

Notice that, although the spatial configuration of the
coarse grained field is not appreciably changing in this time
domain, the mean square displacem@ftt) grows as

(36)

D(t)~exp[L
~e =

B. Three dynamical regimes

1. Regime 1: Pinning

2. Regime 2: Slow evolution

Pinning lasts up tar,. Fort>r,, we haveR(t)>A "1,
R2(t)=D(0)t (37) thus particles diffuse out of the cages and the evolution
starts. For sufficiently deep quenches and large densities,
(see Fig. 1 At first sight the fact that this frozen state mani- condition(32) applies in an intermediate time domain. More-
fests itself with the constancy of all the physical observablesver, in this caseAS? is much larger then the fluctuation of
but one can seem unphysical, since one would expect alshe low-temperature final stal®()=qT, so that the last
R?(t) to be a constant. However, it must be observed thaterm in Eq.(27) can be neglected. Therefore, using the de-
R2(t)— R?(t,)<A 2 in this regime, and that\ ! is the  termination(33) of the diffusivity D(t) in connection with
typical size over which the variableis coarse grained. In an Egs.(15),(27) we arrive at the following equation fdR(t):
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FIG. 3. The density fluctuationS?(t) are plotted against time

for different densitiesz=0.70, 0.80, 0.85, 0.90, 0.93, 0.95 from

left to right) for a quench toaT=10"*. In the main frame the out-
come of a numerical simulation of E¢5) is shown whereas the

inset refers to the mean field solution, with the same parameters.
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Physically, during the second regime the system manages
in order decrease the large fluctuations seeded by the high
temperature initial condition. However, this is a complicated
task, since the dynamics is slaved to the slow evolution of
the dense region that are almost frozen. Eventually, when the
fluctuations S(t) become comparable to their equilibrium
value, this regime ends and the third, stationary, state is en-
tered att=r,.

3. Regime 3: Equilibrium
For long timest> 7., a simple diffusive behavior is ob-
tained becaus®(t) attains asymptotically a constant value
D(«), as can be easily checked from Eg6). This implies
R3(t)=D(x)t (44)

as can be seen in Fig. 1, so that the normalized correlator
exhibits the usual exponential decay as a functioh of

The location of the three regimes described in the text are outlined

by the numbers 1, 2, and 3.

dR2(t)
at —exp{ -3

Solving for long times one has

v 213 R(t)_Zd/s
) . (39
hAS?) @y V2ARA(1)]

R2(t)=b(Int)? (39
with §=6/d and
®4(o)(hAS?) 23]
T 1“0

By virtue of Eq. (24) this implies that, for fixedt,,, the
correlator decays as an enhanced power (sse Fig. 2

C(K,ty, ) =exp[R3(t,) k& expl— b[In(t)]°k?} .  (41)
When alsat,,>7,, one has
C(k,ty,,y=exg{—b(In(t)]°~[In(t,)])k?}. (42

From Eq.(42) it is readily seen tha€(k,t,,,t) is not a func-

C(k,ty t)=e" D)t g{R¥ (K} (45)
(see Fig. 2 Whent,,> 7., one has
Tk t,, )= DEN-tu]k (46)

and time translational invariance is obeyed.

C. Characteristic times

For shallow quenches and small densities the duration of
the preasymptotic regimeé4 and 2 is negligibly small and
the equilibrium state is entered from the beginning. This du-
ration increases if the system is initially brought very far
away from equilibrium by performing deep quenches with a

high density; The role of the temperature jumfT is
obvious, since increasindT brings the initial and final
states far away. On the other hand, dense regions, which are

initially frozen, are more abundant whenis increased to-
wards 1, thus slowing the dynamics. Here we make these
considerations more quantitative by explicitly computing the
typical durationr, and 7, of these regimes. In Fig. 8nse}
these characteristic durations obtained from a numerical in-
tegration of the mean field equations are shown.

Moreover, we will also compute the characteristic time of
relaxation of fluctuations™® in the three kinetic regimes.

tion of the difference —t,, alone, but depends separately on This relaxation time can be computed from the knowledge of
t, andt. Time translational invariance is not obeyed in thisE(IZ,tW,t) since, from Eq.(28), E(Iz,tw,t) is a function

regime, as shown in Fig. 2.
From Egs.(27),(39), S(t) can be obtained as

S(t)~(Int)~>? (43

(see Fig. 3 A logarithmic relaxation of the density fluctua-
tions is also observed in molecular dynamics simulations of

out of equilibrium liquid glass formef14]. From Egs.
(11),(39) the spatially averaged autocorrelatiaft,, ,t) also
decays logarithmically.

which monotonously decays over a characteristic time inter-
val 7'®(k,t,,) defined through

R*(7"*+t,,) — R?(t,) =k 2 (47)

1. Regime 1: Pinning
The durationT, of this first regime can be obtained by
requiring aC(IZ,t,t)/at to be negligible in the physical range
|k|<A. We computeﬁC(IZ,t,t)/&t from EQgs.(24),(37) as
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IC(K,t,t N Te=min{M ~%(p),exp(SZ) "3, 53
—(at ) _ —2k2D(0)[C(K,0,0)— T]e 2Pt (4 == min{M " (p),exp(Seq) 53
Wheresng gT are the density fluctuations in the equilibrium
For small times the maximum of this function in the physicalState. From Eq(53) it is seen that for very smaffixed) final
range [k|<A is located atk=A. The requirement that temperatures, since exgQ) " is very large,7e~M~*(p)

JC(|k|=A,t,t)/ot must be small can be fulfilled up to a divergesala Vogel-Fulcher ag, is approached. The mecha-

certain time[15] nism leading to the equilibrium state in this case is an unac-
tivated structural rearrangement of dense regions which takes
In{2A%D(0)} IN[qAS?] 49 place atT=0 as well. On the other hand, if the density is
o= 1 , . . . . .
p 2A2D(0) IN[2A2D(0)] kept constant to a high value, the equilibration time diverges

with decreasing temperatures in a modified Arrhenius form
To~exp@T) 3. In this case equilibration is achieved by
thermal fluctuationshakingthe frozen regions and, there-
ore, is due to an activated mechanism.

The characteristic relaxation time®\(k,t,,) in the slow
evolution regime can be computed through E&),(47) as

where the constan and the difference\S? between the
density fluctuations in the initial and final states have bee

defined below Eq(27). 7, depends both on the densjiyand
T; throughD(0) [see Eg.(26)] and on the quench depth
through AS?. When bothT; and T are held fixed, so that
AS?=const, Tp grows ad(0) ! as the density is increased. 1

The explicit dependenc®(0) on p can be estimated in 7'2,e|(|<,'f\,v)IGXF{—ZJF(|ntw)(S
simple limiting cases. For large valuesDf, since the ther- bk

mal fluctuations of the initial state are large, conditi@2)
applies and, from Eq33) one has

1/8
—ty,. (54)

From Eq.(54) we see that, due to the lack of time transla-
tional invariance, the relaxation time depends tqn For
323 large waiting.tim(.asTge'(k,tW) grows linearly withtWI (apart
D(O):exp{ - (500 from logarithmic ~ corrections namely, 75(k,t,)
2(1-p)*® =t,,/[ Sbk?(Int,)°]. Furthermore, since from Ed40) one
_ hasb~(AS?)%M, one sees that, for fixet,, 72(k,t,) is a
since for largeT; one hasS(0)=1-p. For sufficiently small  decreasing function cAS?, that is of the quench depth.
T;, so that condition(35) applies,D(0) can be evaluated

through Eq.(36) 3. Regime 3: Equilibrium
The equilibrium relaxation timef'(k) can be easily com-
D(0)=ex e (51)  Puted through Eqs(44),(47) as
p—1
|
In both case50),(51) one observes a strong divergence of 70 (K)= (55)

. o D(%)k?
75(K) as the maximum density is approached.
On the other hand, for fixegp and T;, so thatD(0)  which does not depend dg,, due to the time translational
= const, 7, depends logarithmically on the density differenceinvariance. At the point of structural arrest the density fluc-
AS?, which increases as the quench depth is increased. Neuation of the equilibrium state vanish, so that, through Eq.
tice that, forAS?<[2gA2D(0)], pinning is completely ab- (36), one hasD()=M(p). We recover then the Voghel-
sent. _ o _ | Fulcher law(1), the relation that has long been known in the
The typical relaxation time in the pinned statg(k) as |iterature of viscous fluids and glasses and that was first theo-
defined through Eq47), is obtained using E¢37) as retically obtained by Adam and Gibbs with theoperative
rearrangement theoryThis justifiesa posteriori the phe-
nomenological assumptiaf?) for the mobility.

rel —
0= S0 (52)

VIl. THE FLUCTUATION-DISSIPATION RATIO

which does not depend ay. An important issue to understand the off-equilibrium dy-

namics is the relation between the correlation function in the
unperturbed situatiorC(K,t,,,t), and the response function
of the system to a small perturbing external fieHdF,t)

éoupled via a term—dehp in the free energy. This leads,
instead of Eq(22), to

2. Regime 2: Slow evolution

During the slow evolution regim&(t) increases while
S(t) decreases. Therefore, after some characteristic time
at least one of the two conditions we have used to infer th
existence of this regime, namely, conditi@®) and the neg-
ligibility of the last term on the right-hand side of E®Q7), .
can no longer be fulfilled. Given the time dependet3) of dp(K,t)

2 " 2 ” "
S(t) in this stage the equilibration time, is at KDOpkH DMK+ 7(kD) (56
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it is represented by a straight line whose slope slowly ap-
proaches 1 whet, grows, suggesting that,z=TX ! plays

the role of aneffectivetemperaturg18] slowly approaching
the bath temperature from above. Notice tKadepends on

t,, alone. This feature can be compared with recent investi-
gations of the response of supercooled liquids in molecular
dynamic simulations. In Refl19] a similar behavior with a
ty,-dependentinternal temperature is observed for ther-
basinresponse, namely, for large-t,,, of a Lennard-Jones
binary mixture. For smalt—t,, the response proves tlie-
trabasin vibrational dynamics, in equilibrium at the bath
temperature, which, in the present approach, is integrated out
by the coarse-graining procedure. Interestingly, in the study
of fluctuation-dissipation relations and violations of the equi-
librium FDT, a functionX depending only ort,, has also
been found in models for granular med20] and in experi-
ments on structural glassgal].

FIG. 4. Fluctuation dissipation plot. The integrated response

x(K.t,t,) is plotted agains€(k,t,t,) in mean field fork= /2 and
different waiting times 1, = 150,230,350,2000 from left to right
The temperature of the quenchTiss10™* and the average density
p=0.95. In the inset the time evolution of tleéfectivetemperature
Tetr IS Shown.

so that
> - B2+ 2 t =,
p(k,t)=p(k,00e” ROk +J0[n(k,t )

+K2D(t)h(K,t")]elREI-ROIK (57

The integrated response function

(Kk,t t)—ft op(k.0 dt’ (58)
A= ), sh(Rot)

reads
(Kt 1) =1—C(Kty,1). (59)

The quantitiesy andC in equilibrium are linked one to the
other since the fluctuation-dissipation theor¢h®] states
that

ax(K,t, t
xE—Tmzl. (60)
IC(K,ty,t)

In off-equilibrium situations this relation is violated and,

VIIl. NUMERICAL SOLUTION: METHODS AND
RESULTS

We now proceed to the study of E¢G) by means of
numerical simulations. We have integrated E) in the
presence of the mobility7) on a two-dimensional square
lattice with mesh sizé\x and periodic boundary conditions
in all directions[22]. Both spatial derivatives and time inte-
gration have been approximated by an Euler first order dis-
cretization scheme.

Regarding time discretization, since the density fluctua-
tions are initially very large, due to the high-temperature
initial condition, a small value ofit is required at the begin-
ning of the simulation in order to avoid numerical instabili-
ties. However, for longer times, fluctuations dedage Fig.

3) and larger values adt can be used. Moreover, for dense
systems, the degree of instability of E&) is greatly tamed
by the smallness df1(p). The value ofdt can therefore be

adjusted according to the average denEtgr he speed of the
computation, then, can be greatly eﬂhanced by selecting a

appropriate initialdt for each value op and then using an
adaptive time step technique that successively increases it
properly as time goes on. With this trick very long relaxation
times for high density systems can be accessed. For spatial
discretization we simply takAx=1.

The presented results have been obtained by averaging
over ten different initial configurations for lattice side
=128. The sample is quenched rapidly from high tempera-
ture to the working temperaturg which is reached at time

t=0. The initial conditiorp(F,t) which describes the homo-

generally X, the fluctuation dissipation ratio, is a function of geneous state with random fluctuations at a very high tem-

t andt,, [17].

perature before the quench is given b};f(F,t)zp

In the present mean-field model, we can readily evaluate_ Sp(r,t), wherep is the average density, which will remain

X as
X(ty ) =TC YKty tw), (61)

namely, the inverse of the structure factor computed,at
times the bath temperature. The parametric plot gfvs C
(fluctuation dissipation plotis shown in Fig. 4; for every,,

constant during time evolution, andp(F,t) are random
numbers uniformly distributed if0,1—p]. The system is
subsequently allowed to evolve at constant temperaiure
according to Eq(5).

We present results for different temperatures and average

densitiesp. The behavior of samples with differeptshows
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FIG. 6. The spatial heterogeneous pattern insllog regime(c)
is outlined by a slow decay, as a function kf of the structure
factor C(k,t), plotted here against?, with u=1/6. C(k,t) is
consistent with a non-Gaussian f&(K,t)=Ce [0 Different

_' ' o curves from top to bottom refer to increasing times belonging to the
i f:- — second regime, witlp=0.95 andT=10"*.
- N | |
i LS '_i LB Then, fort>7,, a second regime is entered characterized by
= | " the decrease o8%(t). Eventually equilibrium is achieved

@ © and S?(t) reaches a constant value.

o This whole pattern is reflected in the behavior of the par-
different times from the quench instant onward, fe=0.95 and  Fig. 1. As the density is increased toward the limiting value
T=10‘_4. Parts of the figure referred to d8)—(d) are counted [, =1 the behavior oR?(t) shows evident deviations from
clockwise starting from top-left. Dark spots are denser regi@s. 5 |inear growth typical of Brownian motion. In the first re-
shows the initial high-temperature disordered configuration, characgime Rz(t) grows linearly in time. The inflection region in
terized by large density fluctuations. As time goes on, the system ifhe intermediate time domain corresponds to the second re-
practically pinned in the initial configuration up to a characteristicgime This becomes more pronounced when the density is
time 7,=750(b). This is the first dynamical regime. FOP 7., 1658 0 ageq Then, in the equilibrium stalRé(t) keeps grow-
dense regions equilibrates whereas high density zones are still prac

tically frozen and pronounced spatial heterogeneities are observeI .g linearly again. The three dynamical regimes characteris-

This is shown in(c), where the configuration at the tinte- 1, ic of dense systems will be discussed in detail separately

belonging to the second regime, is shown. Only after long times th?elow'
systems becomes spatially uniform again and equilibrium is at- ) o
tained, as show iid) at t=10"2. A. Regime 1: Pinning

_ Let us consider thenapshotgictures, as those presented
that, for densities up tp=0.7 a simple diffusive behavior is in Fig. 5, showing the system during the dynamical evolu-
observed, corresponding ton@rmal liquidregion. Here the  tion, In this figure the configuration of a system with
mobility remains of order 1 all over the system. In this case— g 95 quenched from an high temperature initial stat@ to
the behavior of all the observables introduced in Sec. IV can- 194 js shown at different times. Here the gray scale cor-
be computed analytically by lettinel (p) =const in Eq.(5); responds to the value of the densiigr,t), the darker re-
we have tested this hypothesis numerically. The decay of the; ) -
average density fluctuatior@(t), for instance, is plotted in 9ions being the densdblack corresponds te(r,t)=1].
Fig. 3. For low densitiess?(t) very quickly decays to the The first plot represeqts the sy§tem in the mma] high-
constant value characteristic of the equilibrium state. Thdémperature state at time=0 while the second picture
mean square displacemeR?(t), shown in Fig. 1, behaves shows the situation at tlmqj=750: E(om the opservatlon of
linearly and the autocorrelation functic®(k,t,,,t) of the these two figures one sees that initially, for times uprgo

svstem has an exponential decay. as expected for a sim he system is blocked and practically no evolution is ob-
Ii()q/uid P Y, P P&rved. Large density fluctuations, seeded in by the high-

By raising the density, one gradually enters a diﬁc(_}rentemperature initial condition, are frozen and the system is
: S - Hrapped. This pinning phenomenon is reflected by the behav-
regime where the vanishing of the mobility slows the dynam-; o ) .

ics: this produces an off equilibrium glassy behavior, beford®r of Poth C(k,ty,t) andS*(t), as shown in Figs. 2 and 3,
the equilibrium state is entered, that becomes more evidefgSPeCtively, which remain constant in this time domain.

as density is increased towapd=1. The behavior oB?(t)
shows that, for large densities, the dynamics can be divided
in three regimes. Initially, fot smaller than a characteristic ~ The second regime is enteredtat 7, and lasts up td
time 7, S%(t) remains constant. This is the first regime. ~r,. The typical configuration of the system in this time

B. Regime 2: Slow evolution

031106-9
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FIG. 7. A(t,t,,) is plotted against—t,, for different values of,, Y 5.10° 10
(increasing from left to right at p=0.95 andT=10"4, “h
) ) ) ) ) FIG. 9. C(k,t,t,,) is plotted in the equilibrium regime against
domain corresponds to the picture in the third column of Flg,[_tW for p=0.95, T=10"5.
5. Here one observes that less dense regions equilibrate

whereas high density zones are still practically frozen. AfterSible dependence on the waiting timgis observed. In Fig.

a while this gives rise to pronounced correlated spatial hetg 7. and 7, obtained through the numerical solution of the

erogeneities. This spatial pattern is outlined by a slovy decayr‘noglel are plotted as function of the density: the behavior of
as a function ofk of the structure factorC(k,t)  the relaxation times is consistent with an exponential diver-
=(p(k,t)p(—k,t)), that is consistent with a stretched expo- gence, as found in mean field.

nential fit:

1. Regime 3: Equilibrium

C(K,t)=Ce lIOK™ (62) o _
After a characteristic time,, the strong spatial heteroge-

fneities observed in the second regime decay and the system

standard diffusio) as shown in Fig. 6. Dynamical heteroge- enters an asymptotic stage characterized_by small tempera-
neities are related to cooperative rearrangements of particiddre fluctuations around the average denpifyas shown in

in glassy states owing to configurational restrictions. Such affid- - This regime corresponds to an equilibrated state

idea was first put forth by Adam and GibB&] who intro- where time translational invariance is obeyed and the auto-
duced the idea of cooperatively rearranging regions. In thi§orrelation function decays exponentially, as shown in Fig.

second regime the kinetics, in fact, is ruled by the con-9-

strained evolution of spatial heterogeneities with lagge

which produce aslow dynamics. The two time correlators IX. CONCLUSIONS

C(k,t,,t) andA(t,t,), shown in Figs. 2 and 7 decay corre- _ _ _ _
spondingly more slowly than an exponential. Moreover one In this paper we have studied the schematic model intro-

sees that time translational invariance is lacking since a sergluced in Ref[1] for the description of the out of equilibrium
kinetics of supercooled fluids and glassy systems above the

150 10 20 30 temperature of structural arrest. It consists of a diffusion
equation with a mobility in the manner of Vogel-Tamman-
Fulcher in contact with a thermal bath. A detailed analysis
has been carried out both analytically in a mean field ap-

.1010
10| I proach and numerically. The main result is the characteriza-
10 // tion of the gradual crossover betweenamal liquid behav-
e’ ior, where a simple diffusive relaxation with exponentially
™ damped correlations is found, and a glassy behavior where
sl the existence of heterogeneities produces strong off-
10 equilibrium effects. Some properties that are observed in sys-
tems close to the glassy transition, such as the existence of
*—% strong spatial heterogeneities, anomalous diffusion, slow de-
T T —

with u=1/6 (at variance with the usual Gaussian decay o

10

oo cay (such as enhanced power lgawging of density autocor-
30 relation functions, a non trivial fluctuation dissipation ratio
1/(1-<p>) X(t,), dynamical scaling with time, are exhibited by the
FIG. 8. The characteristic times, and 7. are plotted against model.
1/(1—p) for T=10"%. The main picture refers to the numerical ~ The relative simplicity of the model allows us to make
calculations while in the inset the mean field behavior is shown. rather precise quantitative predictions which could be, in

1%
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principle, tested in experiments on glassy systems. Moreease the approximation amounts to neglecting the details of
over, the model can be generalized in a rather straightforthe spatial distribution of the particles on scales smaller than
ward way to study the effect of a gradual cooling procedureAx: This is appropriate when the mean free pathof the
(this is the situation generally achieved in experimgristo  particles is large as compared &x that is for small densi-
investigate the dynamics of a supercooled fluid subject to aties. This leads to conditiofii). For high particle concentra-

external drift, such as a shear flg@3]. tion, on the other handy<I, so that the details of the par-
ticle spatial distribution on scale smaller th&x becomes
ACKNOWLEDGMENTS relevant. In this case condition® and (i) cannot be con-

_ . ) temporary fulfiled and the approximation, in principle,

We thank D. Del Vecchio for a critical reading of the prears down. In particular E¢8) ceases to be valid. Never-
manuscript. F.C. thanks M. Cirillo and R. Del Sole for the he|ess, in the following we will still retain the free energy
hospitality at Rome University, and M. Palummo for com- Eq. (8), since we expect that the far-from-equilibrium prop-

puter help. This work was supported with the TMR network gties of the system can be well described, provided a suit-
Contract Nos. ERBFM-RXCT980183 and PRA-HOP 1999,p6 form of the mobility, as discussed in Appendix B, is

INFM. assumed.
APPENDIX A: THE COARSE GRAINED FREE ENERGY APPENDIX B: A DERIVATION OF ADAM-GIBBS
We consider an assembly of particles of typical sizaad MOBILITY

densityp, with an hardcore repulsive interaction, randomly A functional form of the mobility has been obtained in
moving on ad-dimensional space. Although particles move gitferent approximations by several authors in apparently
continuously in time and space one can introduce an approxheterogeneous context as the free-volume theory of the glass
mation by assuming the existence of a lattice and requiringransition or “car-parking” problems in one dimension
that, due to the hardcore interaction, the occupation numbgk 6 g. Here we show a simple argument from free-volume
of each lattice site can only take the values 0,1. This gasteories, in a spirit very similar to the work by Boutreaux
lattice model can be described in terms of a coarse-grainegnd de Genneks].

variablep(F) representing the average particle density inside Let us consider again the hard spheres system introduced
a box of typical sizea centered at. Since particles do not Pefore. The “free volume™ can be defined as the excess of
interact, the only contribution to the free energy of this sys-volume which can be redistributed in a box, with a given
tem comes from the entrop® Let us consider a box con- density, by rearranging particles positions. The average free
taining N lattice sites. Classically the number of distinguish- volume per particle is

able way forn(F) particles to occupy the box is given by 1 p(F)
—p
Vi= .

N! f 2
"\ — p(r)
o) n(N!N=-n(N]! (AD

(B1)

We can now make the reasonable hypothesis that the distri-

Then the contributiors(r) to the total entropy coming from bution II(V) of empty spaces/ decays exponentially on
the box is scales of ordeW;

N!

—_—_ A2 (V)= 1wy (B2)
n(H!IN=n(NH]" (A2) Vi '

S(r)=In

For largeN, using the Stirling approximation, the entropy per Now we can estimate the probabilityi{p} of a particle to
lattice sites(r)=S(r)/N reads make a move at a given time, considering that it cannot enter

regions of empty space smaller that its own volunes
s(r)=—p(N)Inp(r)=[1-p(r)]IN[1-p(r)], (A3)

where we have used(F)=n(F)/N. With Eq. (A3) the free
energyF{p} is obtained through

M{p}=fb I(V)dv=e PVi=e tel(1=e) (B3

(o} Notice the essential singularity at=1 caused by the de-

Flp S - - > > nominator in the exponent. Since the density dependence of

- —f drip(r)Inp(r)+[1—p(r)]In[1—p(r)]}, the numerator, instead, does not produces sensible differ-
(A4) ences we will replace it with a constant, for simplicity. We

i then consider the following form:
whereT is the absolute temperature.

The lattice-gas approximation is a reasonable assumption M{p}=e v/(1-n), (B4)
if (i) the lattice constanAx is larger thenl and (ii) the
density of the particles is small. Conditi¢i) allows one to  With this form of the mobility Eq.(5) specifies the model
identify the position of a particle with a single site. In this studied throughout this paper.

031106-11



CORBERI, NICODEMI, PICCIONI, AND CONIGLIO PHYSICAL REVIEW B3 031106

[1] F. Corberi, M. Nicodemi, M. Piccioni, and A. Coniglio, Phys. Barrat and W. Kobjbid. 78, 4581 (1997; W. Kob and J.L.
Rev. Lett.83, 5054(1999. Barrat, ibid. 81, 931(1998.

[2] C.A. Angell, Science267, 1924 (1995; M.D. Ediger, C.A.  [15] It must be remembered that, due to the time rescaling intro-
Angell, and S.R. Nagel, J. Phys. Cheb0, 13 200(1996. duced before the characteristic timg (and all those derived

[3] W. Gotze and L. Sjogren, Rep. Prog. Ph§s, 241(1992. below, namely,rs, 7o, and 7,) must also be rescaled in the

[4] W. Kob and H.C. Andersen, Phys. Rev4B, 4364(1993. same way.

[5] E. Ben-Naim, J.B. Knight, and E.R. Nowak, PhysicalP8  [16] Kubo, M. Toda, and N. HashitsumeStatistical Physics
380 (1998. (Springer-Verlag, Berlin, 1985

[6] T. Boutreux and P.G. de Gennes, Physic@4%, 59 (1997). [17] J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and M. Mezard,

7] ‘J_'I_D' Gun;o(n:, M Isi?w Miguel, ar:;j F;Sb Sghrlei,ﬁhise -l(—jrin(': in Spin Glasses and Random Fieldslited by A.P. Young
sition and Critica enomenaedited by C. Domb and J.C. (World Scientific, Singapore, 1997

Lebowitz (Academic Press, London, 198%0l. 8. . -
. [18] L.F. Cugliandolo, J. Kurchan, and L. Peliti, Phys. RevbEk
[8] G. Adam and J.H. Gibbs, J. Chem. Ph¥8, 139(1965. 3898 (1997,

9] P.N. SegreS.P. Meeker, P.N. Pusey, and W.C.K. Poon, Phys . . .
[9] Rev Let%][ ?5 958(1995: P.N Seg?e;/nd P.N. Puseybid. 77 y [19] F. Sciortino and P. Tartaglia, e-print cond-mat/0007208.
771 (1996 s’ee also cit:altions in Ref2]. ' [20] M. Nicodemi, Phys. Rev. Let82, 3734(1999.

[10] W. Kob, J.-L. Barrat, Phys. Rev. Leff8, 4581(1997). [21] T.S. Grigera and N.E. Israeloff, Phys. Rev. L8, 5038
[11] J. Zinn-JustinQuantum Field Theory and Critical Phenomena (1999.

(Oxford University Press, New York, 1983 [22] M. Piccioni, Ph.D. thesis, Naples University “Federico II,”
[12] L.F. Cugliandolo and J. Kurchan, J. Phys2& 5749(1994. Naples, 1999.
[13] M. Nicodemi and A. Coniglio, Phys. Rev. 59, 2812(1999.  [23] F. Corberi, G. Gonnella, and D. Suppa, Europhys. L8%.
[14] U. Mussel and H. Rieger, Phys. Rev. L&, 930(1998; J.L. 318(2000.

031106-12



